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Tumor mutational burden quantification
from targeted gene panels: major
advancements and challenges
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Abstract

Tumor mutational burden (TMB), the total number of somatic coding mutations in a tumor, is emerging as a
promising biomarker for immunotherapy response in cancer patients. TMB can be quantitated by a number of
NGS-based sequencing technologies. Whole Exome Sequencing (WES) allows comprehensive measurement of TMB
and is considered the gold standard. However, to date WES remains confined to research settings, due to high cost
of the large genomic space sequenced. In the clinical setting, instead, targeted enrichment panels (gene panels) of
various genomic sizes are emerging as the routine technology for TMB assessment. This stimulated the
development of various methods for panel-based TMB quantification, and prompted the multiplication of studies
assessing whether TMB can be confidently estimated from the smaller genomic space sampled by gene panels. In
this review, we inventory the collection of available gene panels tested for this purpose, illustrating their technical
specifications and describing their accuracy and clinical value in TMB assessment. Moreover, we highlight how
various experimental, platform-related or methodological variables, as well as bioinformatic pipelines, influence
panel-based TMB quantification. The lack of harmonization in panel-based TMB quantification, of adequate methods
to convert TMB estimates across different panels and of robust predictive cutoffs, currently represents one of the
main limitations to adopt TMB as a biomarker in clinical practice. This overview on the heterogeneous landscape of
panel-based TMB quantification aims at providing a context to discuss common standards and illustrates the strong
need of further validation and consolidation studies for the clinical interpretation of panel-based TMB values.
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Tumor mutational burden: an emerging
biomarker for cancer immunotherapy
Immunotherapy with immune checkpoint inhibitors
targeting cytotoxic T lymphocyte associated 4 (CTLA-4)
or programmed cell death 1 (PD-1) or its ligand (PD-L1)
can provide important clinical benefit to patients
affected by multiple cancers, most notably lung cancer
[1, 2], melanoma [3], renal cancer [4] and urothelial
carcinoma [5]. However, only a fraction of patients cur-
rently treated by immune checkpoint inhibitors derive
benefit from it, while a minority of them suffers from
severe side effects. Given the significant cost and non-
negligible toxicity of these therapies, the identification of

strategies to adequately select those patients most likely
to show a favorable response is recognized as an urgent
medical need. A few potential biomarkers have been
identified up to now, such as PD-L1 gene expression,
microsatellite instability (MSI), mismatch repair defi-
ciency (dMMR), POLE or JAK1/2 mutations, immune
cell infiltration, IFNγ expression, tumor mutational
burden (TMB) or neoantigen burden [6, 7].
TMB is a measure of the total amount of somatic cod-

ing mutations in a tumor and it is currently investigated
as a potential biomarker in non-small cell lung carcinoma
(NSCLC) [8–10]. Accumulating evidence, however, sug-
gests its potential usefulness also in melanoma [8, 11–14],
urothelial cancer [5, 15, 16], mismatch-repair deficient
colorectal tumors [17] and other cancer types [18]. Its
pattern and distribution is highly variable across different
cancer types, with over 1000-fold difference between
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cancer types with the lowest mutational burden and those
with the highest mutational burden, such as those associ-
ated with DNA environmental damage, i.e. by exposure to
tobacco smoke or UVs [19, 20]. Increased TMB was also
observed in tumors with defects in DNA mismatch repair
and DNA replication or in tumors characterized by micro-
satellite instability, as in colorectal cancer [21, 22]. Highly
mutated tumors are more likely to produce abundance of
tumor-specific mutant epitopes, which may function as
neoantigens recognized as non-self by the immune sys-
tem. Therefore, increased activation of immune cells by
treatment with immune checkpoint inhibitors may lead to
improved immune-mediated tumor-cell clearance and
clinical response in these tumors (Fig. 1). A significant as-
sociation between neoantigen production and immune-
mediated clinical response was indeed observed in several
studies [9, 11, 14, 23]. Measurement of this neoantigen
production, though, is expensive and time-consuming.
Tumor neoantigens can be generated by mutations or by
gene fusions, especially out-of-frame fusions. Although
some pipelines have recently been developed for the iden-
tification of neoantigens derived from gene fusions [24],
most research up to now has estimated overall neoantigen

load based only on somatic nonsynonymous coding muta-
tions, called by Whole Exome Sequencing (WES). Briefly,
somatic nonsynonymous coding mutations are identified
by WES and, if RNA sequencing is also available, only mu-
tations occurring in expressed genes are retained. Peptides
containing selected mutations are then identified in silico
and the efficiency of their presentation to the immune
system may be evaluated by mass spectrometry or by algo-
rithms that consider their predicted affinity to the MHC
class I complex and patient-specific HLA class I alleles
[14, 25]. In comparison with overall neoantigen load,
TMB is easier to measure and correlates with it. Although
not all mutations can give rise to tumor immunogenic
peptides, their number influences the amount of neoanti-
gens potentially produced. High TMB correlates with
long-term clinical benefit from immune checkpoint inhib-
itors in patients with melanoma [14], NSCLC [9, 26–28]
and urothelial carcinoma [5, 15, 16, 29]. In addition to
that, patients with mismatch repair (MMR) deficient tu-
mors are more responsive to immunotherapy, probably
due to their high tumor mutational burden [17]. There-
fore, although not always capable to explain the clinical
benefit alone, TMB is a good approximation for neoantigen

Fig. 1 Tumor mutational burden as immunotherapy biomarker. Interaction between tumor mutational burden, neoantigen production and
immune checkpoints. Hyper-mutated tumors (bottom) are more likely than hypo-mutated tumors (top) to generate tumor-specific peptides
(neoantigens) recognized by the immune system. However, immune surveillance can be restrained by simultaneous high expression of PD-L1,
which delivers a suppressive signal to T cells. PD-L1/PD-1 interaction and other immune checkpoints can be inhibited by immune checkpoint
inhibitors, restoring immune response
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load assessment [14], is technically less challenging and less
expensive and may represent a better suited predictive
biomarker for immunotherapy response.
TMB may also represent a relevant prognostic bio-

marker. In BRCA-1/2 mutated ovarian cancers, TMB
correlates with improved overall survival [30, 31]. In
breast cancer patients, tumors with high TMB and favor-
able immune-infiltrate (“hot tumors”) are associated
with prolonged survival [32]. Consistently, basal cell
carcinoma, which is characterized by very high TMB,
presents with slow growth rates and rare metastases. Al-
though not definitively demonstrated, we can speculate
that this less aggressive phenotype may be due to hyper-
mutation, which would trigger, via increased neoantigen
production, a more effective immune response of the
host [33].

Quantification of tumor mutational burden from
gene panels: “yes we can”
Initial studies showing a correlation between TMB and
enhanced response to immunotherapy were based on
WES datasets for TMB quantification [9, 14, 17]. WES
allows a direct measurement of TMB, yet it remains
unsuitable as routine technology in clinical practice, be-
cause expensive, labor-intensive and time-consuming.
Therefore, several studies explored the possibility to pro-
vide equally accurate and clinically predictive TMB
estimates from targeted enrichment sequencing, using
various gene panels (Table 1, Additional file 1: Table S1).
The main challenge for accurate panel-based TMB

quantification is the ability to extrapolate the global
mutational burden from the narrow sequencing space
targeted by a gene panel. In silico analyses were per-
formed to test the concordance between panel-based
and WES-based TMB, which is considered the reference
for TMB quantification. Publicly available WES datasets
were downsampled to the subset of genes targeted in the
panel under consideration and TMB values from such
simulated gene panels were compared with TMB values
from the original WES (Additional file 7: Figure S1), find-
ing high correlation between the two (Additional file 2:
Table S2, Additional file 8: Figure S2). Most of these in
silico analyses were performed using publicly available
WES datasets from TCGA, with the exception of the
Oncomine Tumor Mutation Load Assay or NovoPM and
CANCERPLEX gene panels, for which WES datasets from
COSMIC or from other sources were used. Regardless,
similar correlation values were reported for the differ-
ent gene panels tested (Additional file 2: Table S2,
Additional file 8: Figure S2). For some of these gene
panels (FoundationOne, Trusight170, Oncomine Tumor
Mutation Load Assay, Oncomine Comprehensive Assay
V3 and MSK-IMPACT gene panels), an empirical ap-
proach was also used to test the concordance between

panel-based and WES-based TMB quantification, based
on matched sequencing by gene panel and WES of the
same tumor sample and comparison of matched TMB
values (Additional file 3: Table S3, Additional file 9: Figure
S3). Accuracy of panel-based TMB quantification is influ-
enced by statistical sampling effects and small panels
provide less precise TMB estimates [22, 34–36]. It was
demonstrated that TMB values from the FoundationOne
gene panel, which targets 1.1Mb of genomic space, are
similar to those from WES, whereas accuracy drops im-
portantly when sequencing less than 0.5Mb [22]. Another
study simulated sequencing of theoretical gene panels of
different sizes and identified 1.5 to 3Mb as the best suited
targeted genomic size to confidently estimate TMB [35].
Moreover, the deviation between WES- and panel-based
TMB appears more relevant for samples with low to
moderate underlying TMB levels, compared to samples
with high TMB [22, 35, 36]. Another retrospective study
on a commercial panel of 248 genes likewise cautions
against small gene panels which would lead to TMB
overestimation [37].
Besides the accuracy of panel-based TMB quantifica-

tion, it is critical to assess its capability to discriminate
between immunotherapy responders and non-
responders, as previously observed for WES-based TMB.
Several exploratory analyses demonstrated that panel-
based TMB, as simulated in silico by downsampling a
WES dataset to only include genes targeted by the Foun-
dationOne gene panel, associates with immunotherapy
response [8, 26] or with signatures of immune check-
point activation [38]. Comparable results were observed
in similar in silico analyses for other gene panels, such
as the Trusight170 [39, 40] or MSK-IMPACT [26]
(Additional file 4: Table S4). Notably, direct measurement
of TMB from the Oncomine Tumor Load Assay shows
that this panel-based TMB value allows to classify colorec-
tal cancer cases based on their MSI status [39, 41]. Since
in this cancer type MSI positively correlates with
immunotherapy response, this is a further, yet indirect
evidence, of the capability to predict immunotherapy re-
sponse, using a panel-based TMB estimate. Most import-
antly, a few clinical studies demonstrated that TMB
directly estimated using gene panels is higher in those
patients who benefit more from immune checkpoint
blockade treatment, thus providing “real-life” evi-
dence for its potential clinical predictive value (Fig. 2,
Additional file 5: Table S5). A direct association with
immunotherapy response was shown for the MSK-
IMPACT [42, 43] and the Guardant360 gene panels [44]
but most of the reported studies utilized the Foundatio-
nOne gene panel (Fig. 2, Additional file 5: Table S5). In
particular, in the CheckMate 227 trial, NSCLC patients
with high TMB (> 10 mutations per Mb, measured by
FoundationOne) presented increased progression-free
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survival after combined anti-CTLA-4 plus anti-PD-1/
PD-L1 therapy [45]. Interestingly, TMB was predictive
of anti-PD-L1 monotherapy response in NSCLC
(POPLAR trial, [27]) and metastatic urothelial carcin-
oma patients [5, 15, 16], independently from the PD-L1
expression status. Analysis of archival tumor samples from
melanoma patients treated by anti-PD-1/PD-L1 mono-
therapy also showed superior response rates, progression-
free survival and overall survival in high TMB cases [12].
Moreover, a retrospective study on 151 patients across
diverse tumor types showed that cancer patients with
higher TMB, benefit more from anti-PD-1/PD-L1, anti-
CTLA-4 or high dose IL2 monotherapy [18]. The same
was not observed for combined anti-PD-1/PD-L1 plus
anti-CTLA-4 therapy but the available number of samples
may be too small to draw conclusions [18].

Need for standardization of TMB quantification
and reporting
Despite the increasing number of studies showing the
potential clinical relevance of panel-based TMB as a pre-
dictive biomarker for immunotherapy response, its use
in the clinical setting is currently limited by the absence
of standard methods of quantification and the lack of a
robust and universal cutoff to identify immunotherapy
responders.
Panel-based TMB quantification is influenced by vari-

ous experimental factors affecting library construction
and sequencing, by the pipeline used to call mutations

and by the capability to extrapolate TMB values from
the restricted genomic space sampled by gene panels to
the whole genome (Fig. 3a). Experimental factors (e.g.
tumor purity or sequencing depth) and the variant
calling pipeline (e.g. the variant calling algorithm and
the method to remove germline variants) can signifi-
cantly affect the number of called somatic mutations
and have a similar impact on both panel-based and
WES-based TMB quantification. Indeed, the adoption of
a well-documented standard pipeline was already
claimed for WES analyses as an urgent need to allow
data interoperability between different platforms [46].
The same applies to panel sequencing for TMB quantifi-
cation. In this context, an important factor investigated
for its influence on the number of called somatic
variants is the method chosen to identify and remove
germline variants. Indeed, since only somatic mutations
can potentially produce tumor neoantigens recognized
as non-self by the immune system, it is important to
remove germline variants in TMB quantification. It was
observed that the use of an in silico method for somatic
variant calling instead of matched tumor-normal sam-
ples, leads to increased false positive somatic variants,
which has an important influence on the accuracy of
TMB quantification, especially for small gene panels
[34]. To avoid this, it was proposed to perform TMB
quantification using only high-confidence regions [47]
(e.g. regions of the genome, devoid of potential system-
atic biases or structural variants, where mutations can

Fig. 2 TMB association with progression-free survival. Forest plot of hazard ratios (HR) comparing progression-free survival (PFS) between patients
with high or low TMB, as indicated in the “Comparison” column. If not specified otherwise, TMB is reported as number of mutations per Mb. All
patients were treated with immune checkpoint inhibitors (ICI). Bars represent the 95% confidence intervals. Size of the box is proportional to
precision. Reference to the study and the analyzed cancer type are also reported together with the log-rank p-value. Q1-Q4: quartiles; VUS:
variants of unknown significance. *: TMB quantified from blood; **: Cox proportional hazards model adjusted for age, gender, disease stage and
prior therapy by ipilimumab
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be confidently called), as defined by Zook et al. [48]. It
was also observed that increased somatic false positives
are generated by the in silico germline filtering method
for patients with non-caucasian ancestry compared to
caucasian patients, as the former are less represented in
public databases used for germline variant filtering [34].
The use of ExAC, the largest and more representative
public germline WES database, in addition to dbSNP
and 1000 Genomes, is recommended to reduce this
difference [34].
In addition to these factors, which similarly influence

WES- and panel-based analyses, panel-based TMB
quantification also requires to extrapolate the number of
somatic coding mutations observed in the targeted
genomic space to the number that would be observed
across the whole genome. Extrapolation methods may
differ for various choices in variant filtering, such as
removal of known cancer mutations or synonymous mu-
tations (Fig. 3b). Standard gene panels are commonly
enriched in known cancer genes, which are more likely
to be mutated in a tumor and expectedly enriched in

mutations. Therefore, it was proposed to remove known
cancer variants of targeted genes when performing TMB
quantification, to avoid overestimation of TMB when
extrapolating it across the whole genome [12, 22]. Buch-
halter et al., showed that removal of cancer mutational
hotspots slightly decreases the number of high TMB tu-
mors identified but does not change the general picture
[35]. However, the importance of this filtering, routinely
performed only for Foundation Medicine panels, de-
pends on panel size and composition: some gene panels
may be larger and less enriched in cancer genes by
including, for example, pharmacogenomic variants. As
for synonymous mutations, it is claimed that, although
not biologically meaningful, their inclusion may reduce
sampling noise and improve the approximation of TMB
across the whole genome. Indeed, several works com-
pared TMB quantification with or without synonymous
variants and observed that, when including synonymous
variants, panel-based TMB shows increased correlation
with WES-based TMB values [35, 49] and stronger asso-
ciation with clinical response [9]. Starting from the

A

B

Fig. 3 Differences in the workflow for panel-based TMB quantification. a. Overview of the factors influencing panel-based TMB quantification.
Several variables in library construction, sequencing and in the pipeline to call mutations influence panel-based TMB quantification. Furthermore,
panel-based TMB quantification is influenced by differences in the bioinformatic method to extrapolate global TMB from mutations identified in
the narrow genomic region targeted by the gene panel. b. Differences across various studies in panel-based TMB quantification: gene panel
technical specifications, preanalytical factors and the bioinformatics workflow used to extrapolate from the genomic space targeted by gene
panels global TMB are described. FM1: Foundation Medicine’s FoundationOne panel (v1: 185 genes, v2: 236 genes, v3: 315 genes, v4: 405 genes);
NA: not available; ±: algorithm developed by Sun et al. for in silico removal of germline variants [74]
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above observations, we can infer that some recommen-
dations to build a standardized and robust analysis pipe-
line for TMB quantification are starting to emerge at
least for the following points: i. germline variants can be
most efficiently identified and removed by matched nor-
mal sequencing and, if this is not possible, the largest
available germline variant databases should be used for in
silico filtering, especially for non-caucasian ancestries; ii.
TMB extrapolation to the whole genome is accurately per-
formed by counting all somatic mutations, including syn-
onymous mutations, to enlarge the sampling space and
better approximate global TMB across the whole genome.
As already mentioned, panel-based TMB quantifica-

tion is affected by the genomic size targeted by the panel
and by its gene composition. Notably, gene panels tested
up to now widely differ for number of targeted genes
(from 73 to 710) and size (from 0.39 to 2.8Mb of tar-
geted genomic space) (Additional file 1: Table S1). These
considerations raise the question of how to convert
TMB estimates between different gene panels to allow
cross-platform comparability. Indeed, although the ma-
jority of studies correlating TMB to immunotherapy re-
sponse are currently based on FoundationOne, several
other types of gene panels exist and the offer is steadily
increasing (Additional file 1: Table S1). Moreover, we
still need to standardize the conversion of the reference
WES-based TMB values to panel-based TMB, since the
lower sequencing coverage and higher sequencing depth
of gene panels, as compared to WES, may lead to de-
creased accuracy of TMB values and increased sensitivity
in variant calling. For cross-panels or panel-to-WES
TMB conversion, an in silico approach was proposed,
where TMB distributions derived from two different
technologies were interpolated and aligned and TMB
cutoffs were mapped across distributions [38]. However,
a consensus on a standard method to convert TMB
values is still missing.
Not surprisingly, in this heterogeneous landscape a ro-

bust TMB cutoff to discriminate between immunother-
apy responders and non-responders is still to be defined.
Moreover, the adopted cutoffs sometimes differ across
different studies on the same gene panel (Table 1). Up to
now, the TMB cutoff of 10 mutations per Mb, measured
by the FoundationOne gene panel and found to best
discriminate between responders and non-responders to
immunotherapy in NSCLC patients, is the only one
which has been validated in a separate further study
[28, 50, 51]; this cutoff was also observed, but not yet
validated, in melanoma [38] and in metastatic urothelial
carcinoma [15] (Table 1). Interestingly, these cancer types
present a TMB distribution similar to that of NSCLC [52].
Indeed, due to the diversity of TMB distribution across dif-
ferent cancer types, the adoption of cancer-specific TMB
cutoffs was proposed [35, 43]. TMB cutoff was initially

most commonly established using distribution-based strati-
fication, which can be heavily influenced by outliers, while
it is now often identified based on statistically sound
methods, such as ROC curves. In the future, the use of
ROC curves as a common method of TMB cutoff deter-
mination will greatly help to converge to a robust TMB cut-
off and will facilitate comparison across different platforms.
The heterogeneity in experimental and analytical pro-

tocols, in the extrapolation of panel-based TMB values
and in gene panel technical specifications is currently
limiting the potential use of TMB in a clinical setting
(Fig. 3). For this reason, a common standard for TMB
quantification and a consensus on a clinically useful
TMB cutoff are urgently needed. Some efforts in this
sense are ongoing by the Quality Assurance Initiative
Pathology (QuIP) in Germany (https://quip.eu) and by
the European Society of Pathology. Moreover, in the US,
governmental organizations, health-sector industries,
several NGS gene panel manufacturers and academic in-
stitutions set up a TMB Harmonization Working Group
(https://www.focr.org/tmb) and planned a 3-phase pro-
ject for TMB harmonization. In the first phase, they per-
formed in silico analyses of publicly available TCGA data
to identify sources of variability in TMB quantification
between WES and gene panels. Recently concluded, this
work established that panel-based TMB is comparable
between different gene panels for TMB values ranging 0
to 40 mutations per Mb, that it strongly correlates with
WES-based TMB and it is possibly influenced by the
type of cancer under investigation. It also found that the
observed variance across gene panels stems from their
different gene composition and technical specifications,
as well as from the bioinformatic pipeline adopted [53].
The second step of the project empirically validates
TMB estimates from different gene panels by mapping
them to WES-based TMB values, used as a gold stand-
ard, whereas the last step will define best practices for
TMB use as immunotherapy biomarker in clinical rou-
tine. Following preliminary results on the influence of
the bioinformatic workflow and of gene panel size and
composition on TMB quantification, the working group
recommends the use of gene panels larger than 1Mb
and the standardization of the bioinformatic algorithms,
in addition to standardization of sample processing.
Moreover, it suggests the inclusion of actionable genes,
genes associated with mutagenesis and negative predic-
tors of response in these gene panels and the alignment
of panel-based TMB values to WES-based ones to allow
interoperability across different assays [54].

TMB quantification beyond tissue biopsies and
current gene panels
Most studies on TMB as a predictive biomarker for im-
munotherapy response were performed on bioptical or
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surgical specimens from solid tumors. Since obtaining
tissue biopsies may be challenging and invasive for
patients, it would be critical for the clinical routine to
assess TMB using cell-free DNA (cfDNA) from blood,
which includes circulating tumor DNA (ctDNA), as a
surrogate specimen to biopsy. High throughput molecu-
lar profiling of ctDNA remains technically challenging
but increasing efforts are being made in this direction. A
few studies previously investigated the feasibility of WES
on ctDNA and highlighted some inherent limitations,
such as the low amount of available ctDNA, which re-
duces sensitivity, or ctDNA being more associated with
metastases rather than with primary tumors [55–59]. In
one of the largest studies attempting optimization of
WES-based TMB quantification from liquid biopsy,
WES was performed in parallel on DNA from tissue
biopsies and on cfDNA from liquid biopsies of 32 meta-
static patients and comparable sequencing depth and
coverage were obtained [60]. Performance of variant de-
tection was dependent on the fraction of tumor DNA
within the analyzed cfDNA, as previously described. In
those samples positive for the presence of ctDNA, vari-
ant detection sensitivity of cfDNA-WES compared to
tDNA-WES was 94%, regardless of the tumor type (2
cholangiosarcoma and 19 lung, 5 head and neck, 2
prostate, 2 colorectal, 1 breast and 1 bladder cancer were
analyzed). Most importantly, in ctDNA positive samples,
TMB values from WES on liquid biopsies were robust
and consistent with those from WES on tissue biopsies,
which demonstrates for the first time the feasibility of
TMB quantification from liquid biopsies, using WES.
More recently, it was demonstrated that targeted

enrichment sequencing by gene panels is another valid
approach for TMB quantification from liquid biopsies.
In particular, Gandara et al. developed, tested and analyt-
ically validated a novel gene panel for TMB quantification
from blood [61]. The panel is based on hybridization-
capture enrichment and targets 394 genes, corresponding
to 1.1Mb of genomic space (Fig. 3). Its clinical utility was
evaluated via a retrospective study on 259 NSCLC samples
from patients treated with immunotherapy or chemother-
apy in the OAK and POPLAR clinical trials. Blood-
derived TMB (bTMB) calculated using this novel gene
panel correlated well with tissue-derived TMB (tTMB)
measured by FoundationOne. Moreover, measured TMB
was found to be significantly associated with response to
anti-PD-L1 immunotherapy in the POPLAR trial and this
was further confirmed on patient samples from the OAK
trial. A prospective validation is also currently ongoing in
the BFAST trial (NCT03178552) on advanced and meta-
static NSCLC patients. Interestingly, it was observed that
the capability of TMB, as measured by this panel, to
predict anti-PD-1/PD-L1 immunotherapy response is in-
dependent from PD-L1 expression levels [61]. One of the

main pitfalls of the panel, though, is its limit of detection,
defined as a minimum of 1% tumor content in at least 20
ng of cell-free DNA input, and its dependency on the
overall tumor burden, which influences the likelihood of
detecting ctDNA. The exclusive use of single nucleotide
variants (SNVs) for TMB quantification represents an-
other limitation, although future versions of the algorithm
are planned to be released, which will also use indels. The
commercial Guardant360 and GuardantOMNI gene
panels were also designed for blood-based TMB quantifi-
cation [62]. Their limit of detection was defined as a mini-
mum of 0.3% tumor content in at least 5 ng of cell-free
DNA input. They were validated in silico by subsetting
TCGA WES datasets to only include genes targeted by
the panels. Panel accuracy in TMB quantification was then
evaluated by correlation of TMB values obtained from the
simulated gene panels with those from WES. Their pre-
dictive value was similarly evaluated in silico on 30 lung
cancer samples with matched information on immuno-
therapy response. The performance showed by TMB from
the simulated gene panel in responder identification was
comparable to that of WES-based TMB (Additional file 4:
Table S4). The Guardant360 panel was further tested in a
small retrospective study on 69 patients with various
tumor types [44]. No comparison with tissue-based TMB
has been reported yet, but a significant correlation be-
tween high blood-derived TMB measured by Guard-
ant360 and immunotherapy response was observed [44].
Finally, a further gene panel for bTMB quantification was
recently developed in China. Consistency between panel-
based bTMB values and WES-based tTMB values, tested
in silico and empirically by matched blood and tissue sam-
ples, was comparable to that of the panels described
above. Similar results were also found for its predictive
value, based on in silico analyses. Interestingly, the authors
also raised the issue of the different frequency of onco-
genic driver mutations, such as EGFR or KRAS, between
Asian and white population. For this reason, they compare
TCGA WES-based TMB with panel-based TMB with or
without inclusion of EGFR and/or KRAS mutations. Al-
though similar results are yielded, the raised issue is an
important point to be further investigated in panel-based
TMB quantification [49]. TMB quantification from liquid
biopsies suffers from ctDNA detection limits, which also
depend on tumor size and number of cancer cells, but
these results encourage to further explore and more ex-
tensively validate this approach.
Besides new technologies to estimate TMB from liquid

biopsies, another significant step towards routine use of
TMB in clinical practice is TMB quantification from an
even smaller set of genes than in targeted enrichment
gene panels. Although panel size is known to affect
accuracy of TMB quantification, the use of a highly cus-
tomized set of genes may represent a valid and even less
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expensive approach. In this view, Lyu et al., proposed a
computational framework to assess the best and smallest
subset of genes necessary to estimate TMB as a bio-
marker for lung adenocarcinoma [63]. They were able to
identify a model of only 24 genes which predicted in
silico immunotherapy response with 93% specificity and
85% sensitivity and they suggested that other small
custom sequencing gene panels may be designed in a
cancer-specific way to assess TMB with further reduced
costs.

Future perspectives and recommendations
TMB is one of the most rapidly developing biomarkers
for immunotherapy response, with about 37 ongoing
clinical trials currently registered in ClinicalTrials.gov
that use TMB as stratification biomarker [64]. Several
gene panels were recently optimized to estimate TMB at
reduced sequencing costs, and emerging evidence sup-
ports the feasibility of TMB quantification from liquid
biopsies. However, harmonization in TMB quantification
and reporting remains the main challenge for the near
future: standard procedures are required to allow inter-
operability between different gene panels, compare
results across studies and define a universal cutoff to
confidently identify patients most likely to benefit from
immunotherapy.
Even an accurate TMB value is an imperfect predictor

of immunotherapy response and further studies are
needed to enhance its value as clinically useful immuno-
therapy biomarker. TMB is used as an approximation of
neoantigen burden, upon the assumption that the higher
the mutational burden, the higher the probability for
immunogenic peptides to be generated, which leads to
stronger immune response upon inhibition of immune
checkpoints. Interestingly, neoantigen clonality, in addition
to the overall amount of neoantigens, influences immuno-
therapy response in NSCLC patients [65]. In particular,
tumors enriched in clonal neoantigens (e.g. present in all
tumor cells) are more sensitive to immune checkpoint in-
hibitors than tumors enriched in subclonal neoantigens
(e.g. present only in a subset of tumor cells), in advanced
NSCLC and melanoma patients [65]. Indeed, clonality of
produced neoantigens seems to be associated with a more
effective immune surveillance. On the other hand, enrich-
ment in subclonal neoantigens may activate T cells against
only a subset of tumor cells, leading to less effective tumor
control. Based on these observations, it would be interest-
ing to investigate if information on mutation clonality (e.g.
variant allele frequency) improves the predictive power of
TMB. Evaluation of mutation clonality from gene panels is
not trivial though: the reduced genomic space targeted by
gene panels may not be representative of the overall clonal
architecture and the mutations sampled herein may not be
those generating neoantigens. Interestingly, McGranahan

et al. observed a relationship between subclonal mutations
and mutational signatures associated with alkylating agents
and, in NSCLC, between clonal mutations and mutational
signatures associated with smoking [65]. Mutational signa-
tures associated with smoking were also found to be sig-
nificantly associated with high tumor mutational burden
and with response to immunotherapy [9]. Therefore, al-
though the extraction of mutational signatures from gene
panels may be hampered by the small number of sampled
mutations, these observations suggest that they may prove
helpful to infer neoantigen clonality and enhance TMB
predictive value.
Integration of TMB with other potential immunother-

apy biomarkers represents another promising way to re-
fine prediction of immunotherapy responders. For
example, TMB, defects in DNA mismatch-repair path-
way and the MSI status all are measures of genomic
instability that can provide indirect assessment of tumor
antigenicity, whereas PD-L1 expression, immune cell
infiltration and inflammatory signatures represent bio-
markers of the T cell-inflamed tumor microenvironment.
Therefore, their integration can refine prediction of im-
munotherapy outcome by combining information on
tumor complexity and on the immune response. Indeed,
emerging evidence suggests that, at least in NSCLC,
TMB and PD-L1 expression are independent predictors
and TMB may complement or even outperform PD-L1
expression [10, 26, 50, 66]. Moreover, it was observed
that most tumors with high MSI also present elevated
TMB, whereas the opposite does not hold true. The
combination of TMB with MSI and PD-L1 expression in
gastrointestinal tumors significantly improved the identi-
fication of immunotherapy responders [67]. In another
study, it was observed that TMB is an independent pre-
dictor and only weakly correlates with T cell-inflamed
gene expression profiles (GEP) or PD-L1 expression.
Thus, TMB and T cell-inflamed GEP were jointly used
to identify immunotherapy responders: patients with
both high TMB and high T cell-inflamed GEP were those
with the highest objective response rates on tumors from
four KEYNOTE clinical trials across 22 cancer types.
Similarly, in melanoma patients, a response score based
on the combination of TMB, infiltration of CD8+ T cells
and gene expression profiles for PD-L1, CD8 and a set
of 394 immune genes demonstrated higher sensitivity
and similar specificity than each biomarker alone [68].
To date, the FoundationOne and Guardant360 gene
panels allow to measure both TMB and MSI but no
other potential immunotherapy biomarker. Moreover,
they do not provide the user any combinatorial model to
integrate them. Although further validation in prospect-
ive clinical studies is required for all these potential
biomarkers, several observations suggest that simultan-
eous profiling of both TMB and other immunotherapy
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biomarkers currently under investigation may represent
the next step forward in the design of new gene panels
for clinical use. The Friends and QuIP initiatives for
TMB harmonization recommended to include as much
relevant genetic and molecular information as possible
in these panels, to avoid the need to re-biopsy the
patient for further information. In line with this recom-
mendation, we propose to also include in gene panels
for TMB quantification other potential immunotherapy
biomarkers but also negative predictors of immunother-
apy response [69, 70] and variants predisposing to
adverse reaction to immunotherapy [71, 72]. These and
other recommendations which emerge from the studies
reviewed here, including the one from the TMB
Harmonization Working Group, are summed up in
Additional file 6: Table S6.

Additional files

Additional file 1: Table S1. Technical specifications of gene panels
used or proposed for TMB quantification. For each gene panel, it is
reported the type of cancer and sample for which it was designed, the
enrichment method, the targeted sequencing size (Genomic space) and
the number of targeted genes (# genes). (XLSX 6 kb)

Additional file 2: Table S2. In silico analysis of the correlation between
panel-based and WES-based TMB. Correlation between panel-based and
WES-based TMB, considered the gold standard value, is used to estimate
the accuracy of panel-based TMB quantification. Panel-based TMB quanti-
fication was simulated in silico using a subset of WES which only contains
genes targeted by the panel. (XLSX 11 kb)

Additional file 3: Table S3. Empirical analysis of the correlation
between panel-based and WES-based TMB. Correlation between panel-
based and WES-based TMB, considered the gold standard value, is used
to estimate the accuracy of panel-based TMB quantification. Correlation
analysis is performed on TMB values calculated for samples with matched
panel and whole exome sequencing. (XLSX 6 kb)

Additional file 4: Table S4. In silico analysis of TMB association or
predictive value for immunotherapy response. These analyses were performed
on panel-based TMB values simulated in silico using a subset of WES which
only contains genes targeted by the panel. The table reports measures of TMB
association with immunotherapy response (odds ratios, hazard ratios and
corresponding p-values), differences in TMB distribution between responders
and non-responders (Mann-Whitney U and Fisher’s p values) and measures of
TMB predictive value (AUC, specificity, sensitivity). (XLSX 9 kb)

Additional file 5: Table S5. Empirical analysis of TMB association or
predictive value for immunotherapy response. These analyses were
performed on panel-based TMB values, directly calculated by panel se-
quencing. The table reports measures of TMB association with immuno-
therapy response (odds ratios, hazard ratios and corresponding p-values),
differences in TMB distribution between responders and non-responders
(Mann-Whitney U, unpaired Student’s t and Fisher’s test p values) and
measures of TMB predictive value (AUC, specificity, sensitivity). We also
specify how patients were stratified (“Comparison”), the method used to
determine TMB cutoff, the cohort considered for the analysis (if different co-
horts were analyzed in the study), the type of immunotherapy, cancer type
and number of patients. (XLSX 19 kb)

Additional file 6: Table S6. Proposed recommendations for consistent
TMB quantification and reporting. We report recommendations formulated
by the TMB Harmonization Working Group (https://www.focr.org/tmb) as
well as indications emerging from the studies reviewed in this work.
(XLSX 24 kb)

Additional file 7: Figure S1. Visual representation of the method used
for in silico analyses on TMB quantification accuracy and on association
or predictive value for immunotherapy response. In silico analyses are
based on simulations of panel performance, wherein TMB is calculated
using a subset of WES which only contains genes targeted by the panel.
Accuracy of TMB quantification from the simulated gene panel is
evaluated by comparison with WES-based TMB, used as gold reference,
with correlation analysis. The clinical predictive value of TMB estimated
from the simulated panel is evaluated based on its association with
clinical values measuring immunotherapy response. (PDF 55 kb)

Additional file 8: Figure S2. In silico analysis of the correlation
between panel-based and WES-based TMB. Correlation between panel-
based and WES-based TMB, considered the gold standard value, is used
to estimate the accuracy of panel-based TMB quantification. Panel-based
TMB quantification was simulated in silico using a subset of WES which
only contains genes targeted by the panel. The bubble plot shows on
the x axis the correlation coefficients and on the y axis the gene panel
and the cancer type. Bubble size represents the number of data points
used in the analysis and the color corresponds to the reference study.
(PDF 259 kb)

Additional file 9: Figure S3. Empirical analysis of the correlation
between panel-based and WES-based TMB. Correlation between panel-
based and WES-based TMB, considered the gold standard value, is used
to estimate the accuracy of panel-based TMB quantification. Correlation
analysis is performed on TMB values calculated for samples with matched
panel and whole exome sequencing. The bubble plot shows on the x axis
the correlation coefficients and on the y axis the gene panel and the cancer
type. Bubble size represents the number of data points used in the analysis
and the color corresponds to the reference study. (PDF 155 kb)

Abbreviations
ACC: Adrenocortical carcinoma; AUC: Area under the curve; BLCA: Bladder
urothelial carcinoma; BRCA: Breast invasive carcinoma; CESC: Cervical
squamous cell carcinoma and endocervical adenocarcinoma;
cfDNA: Circulating free DNA; CHOL: Cholangiosarcoma; COADREAD: Colon
adenocarcinoma; CRC: Colorectal cancer; ctDNA: Circulating tumor DNA;
DLBC: Lymphoid neoplasm diffuse large B-cell lymphoma; ESCA: Esophageal
carcinoma; FDA: Food and Drug Administration; GBM: Glioblastoma;
GEP: Gene expression profile; HLA: Human Leukocyte Antigen; HNSC: Head
and neck squamous cell carcinoma; KICH: Kidney chromophobe; KIRC: Kidney
renal clear cell carcinoma; KIRP: Kidney renal papillary cell carcinoma;
LAML: Acute myeloid leukemia; LGG: Brain lower grade glioma; LIHC: Liver
hepatocellular carcinoma; LUAD: Lung adenocarcinoma; LUSC: Lung
squamous carcinoma; Mb: Megabase; mCRPC: Metastatic castration-resistant
prostate cancer; MESO: Mesothelioma; MHC: Major histocompatibility
complex; MMR: Mismatch repair; MSI: Microsatellite instability; NSCLC: Non-
small cell lung cancer; ORR: Objective response rates; OS: Overall survival;
OV: Ovarian serous cystadenocarcinoma; PAAD: Pancreatic adenocarcinoma;
PCPG: Pheochromocytoma and paraganglioma; PFS: Progression free survival;
PRAD: Prostate adenocarcinoma; ROC: Receiver operating characteristic;
SARC: Sarcoma; SCLC: Small cell lung cancer; SKCM: Skin cutaneous
melanoma; SNV: Single nucleotide variant; STAD: Stomach adenocarcinoma;
TCGA: The cancer genome atlas; TCR: T cell receptor; TGCT: Testicular germ
cell tumors; THYM: Thymoma; TMB: Tumor mutational burden; UCEC: Uterine
corpus endometrial carcinoma; UCS: Uterine carcinosarcoma; UVM: Uveal
melanoma; WES: Whole exome sequencing

Acknowledgements
We thank all researchers, clinicians and organizations working in this field for
their contributions and we apologize to those whose work we did not
report or cite.

Authors’ contributions
LF designed, wrote and revised the manuscript. PGP, SG and LM revised the
manuscript. All authors read and approved the final manuscript.

Funding
LF work was supported by the Italian Ministry of Health (Ricerca Corrente,
“Alleanza Contro il Cancro” - ACC network).

Fancello et al. Journal for ImmunoTherapy of Cancer           (2019) 7:183 Page 11 of 13

https://doi.org/10.1186/s40425-019-0647-4
https://doi.org/10.1186/s40425-019-0647-4
https://doi.org/10.1186/s40425-019-0647-4
https://doi.org/10.1186/s40425-019-0647-4
https://doi.org/10.1186/s40425-019-0647-4
https://doi.org/10.1186/s40425-019-0647-4
https://www.focr.org/tmb
https://doi.org/10.1186/s40425-019-0647-4
https://doi.org/10.1186/s40425-019-0647-4
https://doi.org/10.1186/s40425-019-0647-4


Availability of data and materials
Not applicable.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
LF, SG, PGP, and LM declare that they have no competing interest.

Author details
1Department of Experimental Oncology, IEO, European Institute of Oncology
IRCCS, Via Adamello 16, 20139 Milan, Italy. 2Department of Oncology and
Hemato-Oncology, University of Milan, via Santa Sofia 9, 20142 Milan, Italy.
3Division of Early Drug Development, IEO, European Institute of Oncology
IRCCS, Milan, Italy.

Received: 20 December 2018 Accepted: 19 June 2019

References
1. Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Ri H, et al.

Durvalumab after chemoradiotherapy in stage III non-small cell lung cancer.
N Engl J Med. 2017;377:1919–29.

2. Borghaei H, Paz-Ares L, Horn L. Nivolumab versus docetaxel in advanced
nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373:1627–39.

3. Hodi F, O’Day S, McDermott D, Weber R, Sosman J, Haanen J, et al.
Improved survival with ipilimumab in patients with metastatic melanoma. N
Engl J Med. 2010;363:711–23.

4. Motzer R, Tannir N, McDermott D, Frontera O, Melichar B, Choueiri T, et al.
Nivolumab plus Ipilimumab versus Sunitinib in advanced renal-cell
carcinoma. N Engl J Med. 2018;378(14):1277–90.

5. Rosenberg JE, Hoff J, Powles T, Van Der HMS, Balar AV, Necchi A, et al.
Atezolizumab in patients with locally advanced and metastatic urothelial
carcinoma who have progressed following treatment with platinum-based
chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet. 2016. https://
doi.org/10.1016/S0140-6736(16)00561-4.

6. Li X, Song W, Shao C, Shi Y, Han W. Emerging predictors of the response to
the blockade of immune checkpoints in cancer therapy. Cell Mol Immunol.
2019. https://doi.org/10.1038/s41423-018-0086-z.

7. Galluzzi L, Chan TA, Kroemer G, Wolchok JD, López-Soto A. The hallmarks of
successful anticancer immunotherapy. Sci Transl Med. 2018;10(459):1–15.

8. Campesato LF, Barroso-sousa R, Jimenez L, Camargo AA. Comprehensive
cancer-gene panels can be used to estimate mutational load and predict clinical
benefit to PD-1 blockade in clinical practice. Oncotarget. 2015;6(33):34221.

9. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al.
Mutational landscape determines sensitivity to PD-1 blockade in non –
small cell lung cancer. Science. 2015;348(6230):124–9.

10. Carbone DP, Reck M, Paz-Ares L, Creelan B, Horn L, Steins M, et al. First-line
Nivolumab in stage IV or recurrent non–small-cell lung Cancer. N Engl J
Med. 2017. https://doi.org/10.1056/NEJMoa1613493.

11. Van Allen EM, Miao D, Schilling B, Shukla SA, Blank C, Zimmer L, et al.
Genomic correlates of response to CTLA-4 blockade in metastatic
melanoma. Science. 2015;350(6257):207–11.

12. Johnson DB, Frampton GM, Rioth MJ, Yusko E, Xu Y, Guo X, et al. Targeted
Next Generation Sequencing Identi fi es Markers of Response to PD-1
Blockade. 2016;959–968.

13. Eroglu Z, Zaretsky JM, Hu-Lieskovan S, Kim DW, Algazi A, Johnson DB, et al.
High response rate to PD-1 blockade in desmoplastic melanomas. Nature.
2018;553(7688):347–50.

14. Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, et al.
Genetic Basis for Clinical Response to CTLA-4 Blockade in Melanoma. 2014;
2189–2199.

15. Powles T, Durán I, van der Heijden MS, Loriot Y, Vogelzang NJ, De Giorgi U,
et al. Atezolizumab versus chemotherapy in patients with platinum-treated
locally advanced or metastatic urothelial carcinoma (IMvigor211): a
multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2018.
https://doi.org/10.1016/S0140-6736(17)33297-X.

16. Balar AV, Galsky MD, Rosenberg JE, Powles T, Petrylak DP, Bellmunt J, et al.
Atezolizumab as first-line treatment in cisplatin-ineligible patients with
locally advanced and metastatic urothelial carcinoma: a single-arm,
multicentre, phase 2 trial. Lancet. 2017;389(10064):67–76.

17. Le DT, Uram JN, H W, R BB, Kemberling H, Eyring AD, et al. PD-1 blockade in
tumors with mismatch-repair deficiency. NEJM. 2015:2509–20.

18. Goodman AM, Kato S, Bazhenova L, Patel SP, Frampton GM, Miller V, et al.
Tumor mutational burden as an independent predictor of response to
immunotherapy in diverse cancers. Mol Cancer Ther. 2017. https://doi.org/
10.1158/1535-7163.MCT-17-0386.

19. Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, et
al. Mutational heterogeneity in cancer and the search for new cancer-
associated genes. Nature. 2013;499(7457):214–8.

20. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SAJR, Behjati S, Biankin AV,
et al. Signatures of mutational processes in human cancer. Nature. 2013;
500(7463):415–21.

21. Quiroga D, Lyerly HK, Morse MA. Deficient mismatch repair and the role of
immunotherapy in metastatic colorectal cancer. Curr Treat Options in
Oncol. 2016. https://doi.org/10.1007/s11864-016-0414-4.

22. Chalmers ZR, Connelly CF, Fabrizio D, Gay L, Ali SM, Ennis R, et al. Analysis
of 100,000 human cancer genomes reveals the landscape of tumor
mutational burden. Genome Med. 2017;9(1):1–14.

23. Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N. Molecular and genetic
properties of tumors associated with local immune cytolytic activity. Cell.
2015. https://doi.org/10.1016/j.cell.2014.12.033.

24. Zhang J, Mardis ER, Maher CA. Genome analysis INTEGRATE-neo : a pipeline
for personalized gene fusion neoantigen discovery. Bioinformatics. 2017;
doi:https://doi.org/10.1093/bioinformatics/btw674.

25. Yadav M, Jhunjhunwala S, Phung QT, Lupardus P, Tanguay J, Bumbaca S, et
al. Predicting immunogenic tumour mutations by combining mass
spectrometry and exome sequencing. Nature. 2014;515(7528):572–6.

26. Hellmann M, Nathanson T, Rizvi H. Genomic features of response to
combination immunotherapy in patients with advanced non- small-cell
lung cancer. Cancer Cell. 2018;33:843–52.

27. Kowanetz M. Tumor mutation load assessed by FoundationOne (FM1) is
associated with improved efficacy of atezolizumab (atezo) in patients with
advanced NSCLC. Ann Oncol. 2016;27(6):15–42.

28. Ready N, Hellmann MD, Awad MM, Otterson GA, Gutierrez M, Gainor JF, et
al. First-line Nivolumab plus Ipilimumab in advanced non–small-cell lung
cancer (CheckMate 568): outcomes by programmed death ligand 1 and
tumor mutational burden as biomarkers. J Clin Oncol. 2019. https://doi.org/
10.1200/JCO.18.01042.

29. Galsky M, Saci A, Szabo P, Azrilevich A, Horak C, Lambert A, et al. Impact of
tumor mutation burden on Nivolumab efficacy in second-line urothelial
carcinoma patients: exploratory analysis of the phase II CheckMate 275. Ann
Oncol. 2017. https://doi.org/10.1093/annonc/mdx371.

30. Strickland KC, Howitt BE, Shukla SA, Rodig S, Ritterhouse LL, Liu JF, et al.
Association and prognostic significance of BRCA1/2-mutation status with
neoantigen load, number of tumor-infiltrating lymphocytes and expression
of PD-1/PD-L1 in high grade serous ovarian cancer. Oncotarget. 2016;7(12):
13587–98.

31. Birkbak NJ, Kochupurakkal B, Izarzugaza JMG, Eklund AC, Li Y, Liu J, et al.
Tumor mutation burden forecasts outcome in ovarian cancer with BRCA1
or BRCA2 mutations. PLoS One. 2013;8(11).

32. Thomas A, Routh ED, Pullikuth A, Jin G, Su J, Chou JW, et al. Tumor
mutational burden is a determinant of immune-mediated survival in breast
cancer. Oncoimmunology. 2018;7(10):1–12. https://doi.org/10.1080/
2162402X.2018.1490854.

33. Jayaraman SS, Rayhan DJ, Hazany S, Kolodney MS. Mutational landscape of
basal cell carcinomas by whole-exome sequencing. J Invest Dermatol. 2014.
https://doi.org/10.1038/jid.2013.276.

34. Garofalo A, Sholl L, Reardon B, Taylor-Weiner A, Amin-Mansour A, Miao D, et
al. The impact of tumor profiling approaches and genomic data strategies
for cancer precision medicine. Genome Med. 2016. https://doi.org/10.1186/
s13073-016-0333-9.

35. Buchhalter I, Rempel E, Endris V, Allgäuer M, Neumann O, Volckmar A-L, et al.
Size matters: dissecting key parameters for panel-based tumor mutational
burden (TMB) analysis. Int J Cancer. 2019. https://doi.org/10.1002/ijc.31878.

36. Qiu P, Poehlein CH, Marton MJ, Laterza OF, Levitan D. Measuring tumor
mutational burden (TMB) in plasma from mCRPC patients using two commercial
NGS assays. Sci Rep. 2019. https://doi.org/10.1038/s41598-018-37128-y.

Fancello et al. Journal for ImmunoTherapy of Cancer           (2019) 7:183 Page 12 of 13

https://doi.org/10.1016/S0140-6736(16)00561-4
https://doi.org/10.1016/S0140-6736(16)00561-4
https://doi.org/10.1038/s41423-018-0086-z
https://doi.org/10.1056/NEJMoa1613493
https://doi.org/10.1016/S0140-6736(17)33297-X
https://doi.org/10.1158/1535-7163.MCT-17-0386
https://doi.org/10.1158/1535-7163.MCT-17-0386
https://doi.org/10.1007/s11864-016-0414-4
https://doi.org/10.1016/j.cell.2014.12.033
https://doi.org/10.1093/bioinformatics/btw674
https://doi.org/10.1200/JCO.18.01042
https://doi.org/10.1200/JCO.18.01042
https://doi.org/10.1093/annonc/mdx371
https://doi.org/10.1080/2162402X.2018.1490854
https://doi.org/10.1080/2162402X.2018.1490854
https://doi.org/10.1038/jid.2013.276
https://doi.org/10.1186/s13073-016-0333-9
https://doi.org/10.1186/s13073-016-0333-9
https://doi.org/10.1002/ijc.31878
https://doi.org/10.1038/s41598-018-37128-y


37. Nguyen A, Garner C, Reddy S, Sanborn J, Charles BS, Elisabeth ST, et al.
Three-fold overestimation of tumor mutation burden using 248 gene panel
versus whole exome. J Clin Oncol. 2018. https://doi.org/10.1200/JCO.2018.
36.15_suppl.12117.

38. Panda A, Betigeri A, Subramanian K, Ross JS, Pavlick DC, Ali S, et al.
Identifying a clinically applicable mutational burden threshold as a potential
biomarker of response to immune checkpoint therapy in solid tumors. JCO
Precis Oncol. 2017. https://doi.org/10.1200/PO.17.00146.

39. Endris V, Buchhalter I, Allgäuer M, Rempel E, Lier A, Volckmar A-L, et al.
Measurement of tumor mutational burden (TMB) in routine molecular
diagnostics: in-silico and real-life analysis of three larger gene panels. Int J
Cancer. 2019. https://doi.org/10.1002/ijc.32002.

40. Zhang S, So AS, Kaplan S, KK M. Comprehensive evaluation of Illumina’s
TruSight® tumor 170 panel to estimate tumor mutational burden. Cancer
Res. 2017. https://doi.org/10.1158/1538-7445.AM2017-5358.

41. Chaudhary R, Quagliata L, Martin JP, Alborelli I, Cyanam D, Mittal V, et al. A
scalable solution for tumor mutational burden from formalin- fixed ,
paraffin-embedded samples using the Oncomine tumor mutation load
assay. TLCR. 2018:1–15.

42. Rizvi H, Sanchez-Vega F, La K, Chatila W, Jonsson P, Halpenny D, et al.
Molecular determinants of response to anti-programmed cell death (PD)-1
and anti-programmed death-ligand 1 (PD-L1) blockade in patients with
non-small-cell lung cancer profiled with targeted next-generation
sequencing. J Clin Oncol. 2018;36(7):633–41.

43. Samstein RM, Lee C, Shoushtari AN, Hellmann MD, Shen R, Janjigian YY, et al.
Tumor mutational load predicts survival after immunotherapy across multiple
cancer types. Nat Genet. 2019. https://doi.org/10.1038/s41588-018-0312-8.

44. Khagi Y, Goodman AM, Daniels GA, Patel SP, Sacco AG, Randall JM, et al.
Hypermutated Circulating Tumor DNA : Correlation with Response to
Checkpoint Inhibitor – Based Immunotherapy. 2017;5729–5737.

45. Hellmann MD, Callahan MK, Awad MM, Calvo E, Ascierto PA, Atmaca A, et
al. Tumor mutational burden and efficacy of Nivolumab monotherapy and
in combination with Ipilimumab in small-cell lung Cancer. Cancer Cell. 2018.
https://doi.org/10.1016/j.ccell.2018.04.001.

46. Qiu P, Pang L, Arreaza G, Maguire M, Chang KCN, Marton MJ, et al. Data
interoperability of whole exome sequencing ( WES ) based mutational
burden estimates from different laboratories. Int J Mol Sci. 2016. https://doi.
org/10.3390/ijms17050651.

47. Mola N, Schu M, Stiegelmeyer S, Jones W, Weigman V. Tumor mutational
burden: guidelines for derivation and robustness of measurement. Cancer
Res. 2018. https://doi.org/10.1158/1538-7445.AM2018-2250.

48. Zook JM, Chapman B, Wang J, Mittelman D, Hofmann O, Hide W, et al.
Integrating human sequence data sets provides a resource of benchmark
SNP and indel genotype calls. Nat Biotechnol. 2014;32(3):246–51.

49. Wang Z, Dua J, Cai S, Han M, Dong H, Zhao J, et al. Assessment of blood
tumor mutational burden as a potential biomarker for immunotherapy in
patients with non–small cell lung cancer with use of a next-generation
sequencing cancer gene panel. JAMA Oncol. 2019:1–7.

50. Hellmann MD, Ciuleanu T-E, Pluzanski A, Lee JS, Otterson GA, Audigier-
Valette C, et al. Nivolumab plus Ipilimumab in lung Cancer with a high
tumor mutational burden. N Engl J Med. 2018. https://doi.org/10.1056/
NEJMoa1801946.

51. Ramalingam SS. Tumor mutational burden (TMB) as a biomarker for clinical
benefit from dual immune checkpoint blockade with nivolumab (nivo) +
ipilimumab (ipi) in first-line (1L) non-small cell lung cancer (NSCLC):
identification of TMB cutoff from CheckMate 568. Cancer Res. 2018. https://
doi.org/10.1158/1538-7445.AM2018-CT078.

52. Chen Y, Zhang Y, Lv J, Li Y, Wang Y, He Q, et al. Genomic analysis of tumor
microenvironment immune types across 14 solid Cancer types :
immunotherapeutic implications. Theranostics. 2017;7(14).

53. Fabrizio D, Chen S-J, Xie M, Chen W, Quinn KJ, Zhao C, et al. In silico
assessment of variation in TMB quantification across diagnostic platforms:
phase 1 of the friends of Cancer research harmonization project. J
Immunother Cancer. 2018. https://doi.org/10.1186/s40425-018-0434-7.

54. Stenzinger A, Allen J, Maas J, Stewart M, Merino D, Dietel M. Tumor
mutational burden (TMB) standardization initiative: establishing a consistent
methodology for TMB measurement in clinical samples. Ann Oncol. 2018.
https://doi.org/10.1093/annonc/mdy269.139.

55. Murtaza M, Dawson SJ, Tsui DWY, Gale D, Forshew T, Piskorz AM, et al. Non-
invasive analysis of acquired resistance to cancer therapy by sequencing of
plasma DNA. Nature. 2013. https://doi.org/10.1038/nature12065.

56. Murtaza M, Dawson SJ, Pogrebniak K, Rueda OM, Provenzano E, Grant J, et
al. Multifocal clonal evolution characterized using circulating tumour DNA in
a case of metastatic breast cancer. Nat Commun. 2015.
https://doi.org/10.1038/ncomms9760.

57. Butler TM, Johnson-Camacho K, Peto M, Wang NJ, Macey TA, Korkola JE, et
al. Exome sequencing of cell-free DNA from metastatic cancer patients
identifies clinically actionable mutations distinct from primary disease. PLoS
One. 2015;10(8):1–14.

58. Klevebring D, Neiman M, Sundling S, Eriksson L, Ramqvist ED, Celebioglu F,
et al. Evaluation of exome sequencing to estimate tumor burden in plasma.
PLoS One. 2014;9(8).

59. Chan KC, Jiang P, Zheng YW, Liao GJ, Sun H, Wong J, et al. Cancer genome
scanning in plasma: detection of tumor-associated copy number aberrations,
single-nucleotide variants, and tumoral heterogeneity by massively parallel
sequencing. Clin Chem. 2013. https://doi.org/10.1373/clinchem.2012.196014.

60. Koeppel F, Blanchard S, Marcaillou C, Martin E, Rouleau E, Solary E, et al.
Whole exome sequencing for determination of tumor mutation load in
liquid biopsy from advanced cancer patients. PLoS One. 2017. https://doi.
org/10.1371/journal.pone.0188174.

61. Gandara DR, Paul SM, Kowanetz M, Schleifman E, Zou W, Li Y, et al. Blood-
based tumor mutational burden as a predictor of clinical benefit in non-
small-cell lung cancer patients treated with atezolizumab. Nat Med. 2018;
24(September):1441.

62. Quinn K, Helman E, Nance T, Artieri C, Yen J, Zhao J, et al. Development
and analytical validation of a plasma-based tumor mutational burden (TMB)
score from next-generation sequencing panels. Ann Oncol. 2018; doi: 0.
1093/annonc/mdy269.

63. Lyu G, Yeh Y, Yeh Y, Wang Y. Mutation load estimation model as a
predictor of the response to cancer immunotherapy. npj Genomic Med.
2018. https://doi.org/10.1038/s41525-018-0051-x.

64. Chan TA, Yarchoan M, Jaffee E, Swanton C, Quezada SA, Stenzinger A, et al.
Development of tumor mutation burden as an immunotherapy biomarker:
utility for the oncology clinic. Ann Oncol. 2018. https://doi.org/10.1093/
annonc/mdy495/5160130%0A.

65. McGranahan N, Furness AJS, Rosenthal R, Ramskov S, Lyngaa R, Saini SK, et
al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to
immune checkpoint bloackade. Science (80- ). 2016;351(6280):1463–70.

66. Kazmi SM. A retrospective analysis to evaluate prevalence and correlation
between PD-L1 score and tumor mutational burden (TMB) levels in patients
with solid tumor malignancies. Ann Oncol. 2017;28(Suppl 11):xi6–xi29.

67. Salem ME, Puccini A, Grothey A, Raghavan D, Goldberg RM, Xiu J, et al.
Landscape of Tumor Mutation Load , Mismatch Repair Deficiency, and PD-L1
Expression in a Large Patient Cohort of Gastrointestinal Cancers. 2018;805–813.

68. Morrison C, Pabla S, Conroy JM, Nesline MK, Glenn ST, Dressman D, et al.
Predicting response to checkpoint inhibitors in melanoma beyond PD-L1
and mutational burden. J Immunother Cancer. 2018;6(1):1–12.

69. Xiao W, Du N, Huang T, Guo J, Mo X, Yuan T, et al. TP53 mutation as potential
negative predictor for response of anti-CTLA-4 therapy in metastatic
melanoma. EBioMedicine. 2018. https://doi.org/10.1016/j.ebiom.2018.05.019.

70. Ock C-Y, Hwang J-E, Keam B, Kim S-B, Shim J-J, Jang H-J, et al. Genomic
landscape associated with potential response to anti-CTLA-4 treatment in
cancers. Nat Commun. 2017. https://doi.org/10.1038/s41467-017-01018-0.

71. Kirchhoff T, Ferguson R, Simpson D, Kazlow E, Martinez C, Vogelsang M, et
al. Germline determinants of immune related adverse events (irAEs) in
melanoma immunotherapy response. Ann Oncol. 2017. https://doi.org/10.
1093/annonc/mdx376.

72. Hasan Ali O, Berner F, Bomze D, Fässler M, Diem S, Cozzio A, et al. Human
leukocyte antigen variation is associated with adverse events of checkpoint
inhibitors. Eur J Cancer. 2019;107:8–14.

73. Zehir A, Benayed R, Shah RH, Syed A, Middha S, Kim HR, et al. Mutational
landscape of metastatic cancer revealed from prospective clinical sequencing
of 10,000 patients. Nat Med. 2017. https://doi.org/10.1038/nm.4333.

74. Sun JX, He Y, Sanford E, Montesion M, Frampton GM, Vignot S, et al. A
computational approach to distinguish somatic vs. germline origin of
genomic alterations from deep sequencing of cancer specimens without a
matched normal. PLoS Comput Biol. 2018. https://doi.org/10.1371/journal.
pcbi.1005965.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Fancello et al. Journal for ImmunoTherapy of Cancer           (2019) 7:183 Page 13 of 13

https://doi.org/10.1200/JCO.2018.36.15_suppl.12117
https://doi.org/10.1200/JCO.2018.36.15_suppl.12117
https://doi.org/10.1200/PO.17.00146
https://doi.org/10.1002/ijc.32002
https://doi.org/10.1158/1538-7445.AM2017-5358
https://doi.org/10.1038/s41588-018-0312-8
https://doi.org/10.1016/j.ccell.2018.04.001
https://doi.org/10.3390/ijms17050651
https://doi.org/10.3390/ijms17050651
https://doi.org/10.1158/1538-7445.AM2018-2250
https://doi.org/10.1056/NEJMoa1801946
https://doi.org/10.1056/NEJMoa1801946
https://doi.org/10.1158/1538-7445.AM2018-CT078
https://doi.org/10.1158/1538-7445.AM2018-CT078
https://doi.org/10.1186/s40425-018-0434-7
https://doi.org/10.1093/annonc/mdy269.139
https://doi.org/10.1038/nature12065
https://doi.org/10.1038/ncomms9760
https://doi.org/10.1373/clinchem.2012.196014
https://doi.org/10.1371/journal.pone.0188174
https://doi.org/10.1371/journal.pone.0188174
https://doi.org/10.1038/s41525-018-0051-x
https://doi.org/10.1093/annonc/mdy495/5160130%0A
https://doi.org/10.1093/annonc/mdy495/5160130%0A
https://doi.org/10.1016/j.ebiom.2018.05.019
https://doi.org/10.1038/s41467-017-01018-0
https://doi.org/10.1093/annonc/mdx376
https://doi.org/10.1093/annonc/mdx376
https://doi.org/10.1038/nm.4333
https://doi.org/10.1371/journal.pcbi.1005965
https://doi.org/10.1371/journal.pcbi.1005965

	Abstract
	Tumor mutational burden: an emerging biomarker for cancer immunotherapy
	Quantification of tumor mutational burden from gene panels: “yes we can”
	Need for standardization of TMB quantification and reporting
	TMB quantification beyond tissue biopsies and current gene panels
	Future perspectives and recommendations
	Additional files
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

